
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Modeling

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 6

21 November 2006

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline

• From use cases to class diagrams
• Activities during object modeling
• Object identification
• Object types

• Entity, boundary and control objects

• Object naming
• Abott’s technique helps in object identification
• Users of class diagrams

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The Visionary Scenario: Home Computer
• …is a fake
• Picture is an image modification taken from an original

photo of a submarine maneuvering room console
• http://www.chinfo.navy.mil/navpalib/cno/n87/usw/issu
e_8/smithsonian.html

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

From Use Cases to Objects
Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activities during Object Modeling
Main goal: Find the important abstractions
• Steps during object modeling

1. Class identification
• Based on the fundamental assumption that we can

find abstractions
2. Find the attributes
3. Find the methods
4. Find the associations between classes

• Order of steps
• Goal: get the desired abstractions
• Order of steps secondary, only a heuristic

• What happens if we find the wrong abstractions?
• We iterate and revise the model

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class Identification

Class identification is crucial to object-oriented
modeling

• Helps to identify the important entities of a system

• Basic assumption:
• 1. We can find the classes for a new software system

(Forward Engineering)
• 2. We can identify the classes in an existing system

(Reverse Engineering)

• Why can we do this?
• Philosophy, science, experimental evidence

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class identification is an ancient problem

• Objects are not just found by taking a picture of
a scene or domain

• The application domain has to be analyzed.
• Depending on the purpose of the system

different objects might be found
• How can we identify the purpose of a system?
• Scenarios and use cases

• Another important problem: Define system
boundary.

• What object is inside, what object is outside?

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is This?

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is This?

Face

Eye

1..2

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Modeling in Action

• Face
• Sad
• Happy
• Is it one Face or two?
• Mask
• Who is using it?

• Person at Carneval?
• Bankrobber?
• Painting collector

• How is it used?

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Pieces of an Object Model

• Classes
• Associations (Relations)
• Attributes
• Operations

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Associations

• Types of Associations
• Canonical associations

• Part-of Hierarchy (Aggregation)
• Kind-of Hierarchy (Inheritance)

• Generic associations

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Attributes

• Detection of attributes is application specific
• Attributes in one system can be classes in

another system
• Turning attributes to classes and vice versa

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Operations

• Source of operations
• Use cases in the functional model
• General world knowledge
• Generic operations: Get/Set
• Design Patterns
• Application domain specific operations
• Actions and activities in the dynamic model

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object vs Class

• Object (instance): Exactly one thing
• This lecture on object modeling

• A class describes a group of objects with similar
properties

• Game, Tournament, mechanic, car, database

• Object diagram: A graphical notation for
modeling objects, classes and their relationships

• Class diagram: Template for describing many instances
of data. Useful for taxonomies, patters, schemata...

• Instance diagram: A particular set of objects relating to
each other. Useful for discussing scenarios, test cases
and examples

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class Identification

• Approaches
• Application domain approach

• Ask application domain experts to identify relevant
abstractions

• Syntactic approach
• Start with use cases
• Analyze the text to identify the objects
• Extract participating objects from flow of events

• Design patterns approach
• Use reusable design patterns

• Component-based approach
• Identify existing solution classes.

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

There are different types of Objects

• Entity Objects
• Represent the persistent information tracked by the

system (Application domain objects, also called
“Business objects”)

• Boundary Objects
• Represent the interaction between the user and the

system

• Control Objects
• Represent the control tasks performed by the system.

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: 2BWatch Modeling

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects

To distinguish these different object types
in the model we can use the
UML Stereotype mechanism

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Naming Object Types in UML

• UML provides the stereotype mechanism to
introduce new types of modeling elements

• UML is an extensible language

<<Entity>>
Year

<<Entitity>>
Month

<<Entity>>
Day

<<Control>>
ChangeDate

<<Boundary>>
Button

<<Boundary>>
LCDDisplay

Entity Objects Control Objects Boundary Objects

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Types and Change 11 21 2006

• Having three types of object leads to models
that are more resilient to change

• The interface of a system changes more likely than the
control

• The way the system is controlled changes more likely
than the application domain

• Object types originated in Smalltalk:
• Model, View, Controller (MVC)
• Entity, Boundary, Control Objects

• Next topic: Finding objects.

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Finding Participating Objects in Use Cases

• Pick a use case and look at flow of events
• Do a textual analysis (noun-verb analysis)

• Nouns are candidates for objects/classes
• Verbs are candidates for operations
• Also called Abbott’s Technique

• After objects/classes are found, identify their
types

• Identify real world entities that the system needs to
keep track of (FieldOfficer entity object)

• Identify real world procedures that the system needs
to keep track of (EmergencyPlan control object)

• Identify interface artifacts (PoliceStation boundary
object)

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example for using the Technique

• The customer enters the store to buy a
toy.

• It has to be a toy that his daughter likes
and it must cost less than 50 Euro.

• He tries a videogame, which uses a data
glove and a head-mounted display. He likes
it.

• An assistant helps him.
• The suitability of the game depends on the
age of the child.

• His daughter is only 3 years old.
• The assistant recommends another type of
toy, namely the boardgame “Monopoly".

Flow of Events:

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Mapping parts of speech to model
components (Abbot’s Technique)

 Part of speech

 Proper noun

 Improper noun

 Doing verb

 being verb

 having verb

 modal verb

 adjective

 transitive verb

 intransitive verb

Model component

object

class

operation

inheritance

aggregation

constraint

attribute

operation

Constraint, class,
 association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on

videogame

• The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes and
it must cost less than 50 Euro.
He tries a videogame, which
uses a data glove and a head-
mounted display. He likes it.

Generating a Class Diagram from Flow of Events

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame.
The customer buy the game and
leaves the store

customer enters

depends

store
Customer

?

enter()

toy

daughter

suitable

*

less than 50

store

enter()

toy

buy()

toy

age

videogame

daughter

boardgame

Flow of events:

Toy

price
buy()
like()

buy

type of toy
boardgame

daughter
age

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Ways to find Objects

• Syntactical investigation with Abbot‘s technique:
• Flow of events in use cases
• Problem statement

• Use other knowledge sources:
• Application knowledge: End users and experts know

the abstractions of the application domain
• Design knowledge: Abstractions in the solution domain
• General world knowledge: Your generic knowledge and

intution

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Order of Activities for Object Identification

1. Formulate a few scenarios with help from an
end user or application domain expert

2. Extract the use cases from the scenarios, with
the help of an application domain expert

3. Then proceed in parallel with the following:
• Analyse the flow of events in each use case

using Abbot's textual analysis technique
• Generate the UML class diagram.

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Steps in Generating Class Diagrams

• Class identification (textual analysis, domain
experts)

• Identification of attributes and operations
(sometimes before the classes are found!)

• Identification of associations between classes
• Identification of multiplicities
• Identification of roles
• Identification of inheritance

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Who uses Class Diagrams?

• Purpose of class diagrams
• The description of the static properties of a system

• The main users of class diagrams:
• The application domain expert

• uses class diagrams to model the application
domain (including taxonomies)

• during requirements elicitation and analysis
• The developer

• uses class diagrams during the development of a
system

• during analysis, system design, object design
and implementation.

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Who does not use Class Diagrams?

• The client and the end user are often not
interested in class diagrams

• Clients usually focus more on project management
issues

• End users usually focus on the functionality of the
system.

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Developers have different Views on Class
Diagrams

• According to the development activity, a
developer plays different roles:

• Analyst
• System Designer
• Object Designer
• Implementor

• Each of these roles has a different view about
the class diagram (the object model).

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The View of the Analyst

• The analyst is interested
• in application classes: The associations between

classes are relationships between abstractions in the
application domain

• operations and attributes of the application classes
(difference to E/R models!)

• The analyst uses inheritance in the model to
reflect the taxonomies in the application domain

• Taxonomy: An is-a-hierarchy of abstractions in an
application domain

• The analyst is not interested
• in the exact signature of operations
• in solution domain classes

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The View of the Designer
• The designer focuses on the solution of the

problem, that is, the solution domain
• The associations between classes are now

references (pointers) between classes in the
application or solution domain

• An important design task is the specification of
interfaces:

• The designer describes the interface of classes and the
interface of subsystems

• Subsystems originate from modules (term often used
during analysis):

• Module: a collection of classes
• Subsystem: a collection of classes with an interface

• Subsystems are modeled in UML with a package.

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Goals of the Designer

• The most important design goals for the
designer are design usability and design
reusability

• Design usability: the interfaces are usable from
as many classes as possible within in the
system

• Design reusability: The interfaces are designed
in a way, that they can also be reused by other
(future) software systems

=> Class libraries
=> Frameworks
=> Design patterns.

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The View of the Implementor

• Class implementor
• Must realize the interface of a class in a programming

language
• Interested in appropriate data structures (for the

attributes) and algorithms (for the operations)

• Class extender
• Interested in how to extend a class to solve a new

problem or to adapt to a change in the application
domain

• Class user
• The class user is interested in the signatures of the

class operations and conditions, under which they can
be invoked

• The class user is not interested in the implementation
of the class.

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Why do we distinguish different Users of
Class Diagrams?

• Models often don‘t distinguish between
application classes and solution classes

• Reason: Modeling languages like UML allow the use of
both types of classes in the same model

• “address book“, “array"
• Preferred: No solution classes in the analysis model

• Many systems don‘t distinguish between the
specification and the implementation of a class

• Reason: Object-oriented programming languages allow
the simultaneous use of specification and
implementation of a class

• Preferred: We distinguish between analysis model and
object design model. The analysis design model does
not contain any implementation specification.

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Analysis model vs. object design model

• The analysis model is constructed during the
analysis phase

• Main stake holders: End user, customer, analyst
• The class diagrams contains only application domain

classes

• The object design model (sometimes also called
specification model) is created during the object
design phase

• Main stake holders: class specifiers, class
implementors, class users and class extenders

• The class diagrams contain application domain as well
as solution domain classes.

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Analysis model vs object design model (2)

• The analysis model is the basis for
communication between analysts, application
domain experts and end users.

• The object design model is the basis for
communication between designers and
implementors.

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• System modeling
• Functional model, object model, dynamic model

• From scenarios to use cases to objects
• Object modeling is the central activity

• Class identification is a major activity of object
modeling

• Easy syntactic rules to find classes and objects
• Abbot’s Technique

• Analysts, designers and implementors have
different modeling needs

• There are three types of implementors with
different roles during

• Class user, class implementor, class extender.

